Mass Spectrometry – Applications to the Clinical Laboratory of the Future

David Herold, MD, PhD

Professor of Pathology, UCSD MSACL – Founder and Chair

San Diego, CA

dherold@ucsd.edu

Wham!!!

65 Million Years Ago

Where did Kansas go?

Outcome Diagram

Out in the dark – destination Earth

Out of Cash!

But the scariest, highest impact threat are the

Antibiotic Resistant Microbiota!

Nonresponsive Cellulitis

MRSA

And that is just the tip of the iceberg!

Absence of effective antimicrobial drugs

• "Resistance is said to present a risk that we will fall back into the pre-antibiotic era."

 "Resistance is not just an infectious disease issue," they say. "It is a surgical issue, a cancer issue, a health system issue."

Resulting in Change in Practice

 Estimate infection rates after hip replacement would increase from about 1% to 40-50%, and that about a third of people with an infection would die. It seems likely that rates of hip replacement would fall, bringing an increased burden of morbidity from hip pain.

• BMJ 2013;346:f1663

Is Mass Spectrometry an Answer?

• For the Financial Crisis.

• For the Microbial Threat.

• For Other Laboratory Needs.

Your Impression of Mass Spectrometer?

And Related Personnel Problems

However, When I Think Mass Spec:

Today's Mass Spectrometer

The Fundamentals of Mass Spec

- carbon has a mass of 12
- hydrogen has a mass of 1
- oxygen has a mass of 16
- nitrogen has a mass of 14

But this is not strictly true, but close enough

$C_{27}H_{46}O = (12 X 27) + (1 X 46) + (16 X 1)$ = 324 + 46 + 16 = 386

Microbiology Applications

Traditional Microorganism Identification

The tube-method: pattern matching

• The utilization of patterns of reactions that indicate the most likely identification of an unknown organism

- First compendium or "library" were tables that indicated the expected +/- for different reactions
- Depending on the suspected organism up to 20+ tubes might have been needed

Miniaturized Kits: pattern matching

Gapi [®] Coryne	Origins / Source / Horisett / Origen / Origen / Epol/sees / Unsprung / Oprindelia / Pochedzanis :	
Aufsau taolo / Otron tenis / Andere Teolo / Otron praobes / Alt-i teol / Outron teates / NARg ofgeröcity/ Antina teolet / Andro taolo / Inne Melly I	Berl/Tannaign	FUSU M

API is a registered trademark of bioMerieux

• Biochemical test systems with improved ease of use, cost and reproducibility.

- As with the tube method, one compares a pattern of reactions produced for an unknown to known results contained in a database.
- Scores produced are evaluated in conjunction with other diagnostic information to arrive at an identification.

Identification via MALDI-TOF

Step 1: Target Preparation

Direct Smear Method:

- Touch colony with transfer device, such as toothpick
- Transfer a small amount onto spot
- Let air dry
- Cover with 1 µL of MALDI matrix, let air dry
- Analyze up to 96 samples

Step 2: TOF (Time of Flight) Measurement

• Insert the dried target plate into the MALDI-TOF

 Close the sample door and start the run

Step 3: Identification

- Unknown microorganism is matched against each main spectrum in the library
- Ranking according to matching score and threshold for ID

Step 3: Identification - Results table

Result Overview							
Analyte Name	Analyte ID	Organism (best match)	Score Value	Organism (second best match)	Score Value		
<u>GDMT 23</u> (+++)	A1	Yersinia pseudotuberculosis	<u>2.47</u>	Yersinia pseudotuberculosis	<u>2.396</u>		
<u>GDMT 23</u> (+++)	A2	Yersinia pseudotuberculosis	<u>2.435</u>	Yersinia pseudotuberculosis	<u>2.379</u>		
<u>GDMT 24</u> (+++)	A3	Yersinia pseudotuberculosis	<u>2.338</u>	Yersinia pseudotuberculosis	<u>2.332</u>		
<u>GDMT 24</u> (+++)	A4	Yersinia pseudotuberculosis	<u>2.409</u>	Yersinia pseudotuberculosis	<u>2.391</u>		
<u>GDMT 25</u> (+++)	A5	Yersinia pseudotuberculosis	<u>2.421</u>	Yersinia pseudotuberculosis	<u>2.332</u>		
<u>GDMT 25</u> (+++)	A6	Yersinia pseudotuberculosis	<u>2.339</u>	Yersinia pseudotuberculosis	<u>2.308</u>		
<u>GDMT 26</u> (+++)	A7	Yersinia enterocolitica	<u>2.518</u>	Yersinia enterocolitica	<u>2.143</u>		
<u>GDMT 26</u> (+++)	A8	Yersinia enterocolitica	<u>2.496</u>	Yersinia enterocolitica	<u>2.282</u>		

Range	Description	Symbols	Color
2.300 3.000	highly probable species identification	(+++)	green
	secure genus identification, probable		
2.000 2.299	species identification	(++)	green
1.700 1.999	probable genus identification	(+)	yellow
0.000 1.699	no reliable identification	(-)	red

How does it work?

Matrix Assisted Laser Desorption/Ionization

- Matrix: alpha-cyano-4-hydroxycinnamic acid (1 uL)
- Matrix molecules readily absorb laser light (photon energy)
- •The matrix is acidic, and donates positive charge to the analytes

Matrix Assisted Laser <u>Desorption/Ionization</u>

- Localized heating causes micro-explosion of material
- lons "desorb" from the target surface in the gas phase

TOF – Time of Flight

Utility of MALDI-TOF Mass Spectrometry Following Introduction for Routine Laboratory Identification

Neville S, LeCordier A, Ziochos H, Chater M, Gosbell I, Maley, M and van Hal J

- Study was to determine the utility of MALDI-TOF in a routine diagnostic laboratory.
- One months of isolates run (N=927 run in triplicate)
- Cost study Run

Based on 927 isolates (1 month) Current Method Cost= \$10,354 (AUD\$) MALDI-TOF MS = \$1,958 (AUD\$) Savings = \$8,395 (AUD\$)

Organism Group	Genus ID %	Species ID %
Anaerobes	97	64
Enterobacteri aceae	96	87
Gram + Rods	91	57
Gram + Cocci	95	83
Misc Gram -	100	92
NFGNR	100	89
TOTAL	96	84

JCM, August 2011

MALDI-TOF – Blood Culture Analysis

Positive blood culture bottle

Solution 1*

Solution 2

Harvest 1 mL blood culture liquid in an Eppendorf tube 1 min

> Add Lysis Buffer and mix 30 sec

Centrifuge (1 min, 13,000 rpm), discard supernatant 1 min

> Add Washing Buffer and mix 1.5 min

Centrifuge (1 min, 13,000 rpm), discard supernatant 1 min

Suspend pellet in 300 μl water

Preparation

Schubert et al., ECCMID 2010

Total time for bacterial isolation ~5 min

Performance: >80% correct ID no false-positive ID
The promise of MALDI-TOF Mass Spectrometry:

- Time-to-result -> Faster

- Analytical capabilities -> Better

- Cost/sample -> Cheaper

Archives of Pathology and Laboratory Medicine - K. Perez et al., epublished Dec 2012

Savings over Conventional Methods

- Cost savings for the more rapid id = \$19,457/pt
- Methodist Houston is 1000 bed hospital
- Expect savings of \$19 M/year
- USA has ~1,000,000 hospital beds
- Therefore, expected annual US savings = \$19 B/year
- This is gram negative blood cultures only!
- Does not include gram positive, mycobacteria, mold and fungi - this will increase savings
- But we are leaving \$26,162 on the table, thus.....

Problem Addressed by Ibis PLEX-ID Biosensor Technology

- Over 1,000 infectious microbes known to cause disease in humans*
 - 217 viral species
 - 538 bacterial species
 - 307 fungi
 - 66 parasitic protozoa
- Numerous strain variations of each species (i.e., >100 strains of Streptococcus pyogenes)
 - Emergence of multi-drug resistant and highly pathogenic strain types
- Unknown and unculturable pathogens

Ibis PLEX-ID Biosensor

- Broad identification of all microbes
 - Bacteria, Viruses, Fungi,
 Parasites
- No culturing
- Detects mixtures of microbes
- High resolution genotyping and strain identification
- Drug resistance testing
- Identify emerging agents
- Rapid, high throughput, cost effective

Ibis Process Part 1: Sample Prep and Broad Range PCR

Ibis Process Part 2: MS Analysis and Signal Processing

Electrospray Ionization does not break DNA

Typical Primer-Amplified Region in Bacteria

Ibis Process Part 3: Triangulation Using Multiple Primer Pairs

What is the expected outcome?

Expect \$500 - \$1,000/hr cost for delay in information for patient treatment

We have to attack 4 points:

Early Diagnostic Indication

Microbial Identification

Microbial Susceptibility

Medical Intervention

- Now that we have saved the world from deadly resistant infections –well ok, we have helped!
- Helped reduce the cost of heath care.
- Provided better clinical outcomes.

Your boss will say that's history! What have you done lately?

Better Clinical Chemistry

• Fast is fine, but accuracy is everything!

- Wyatt Earp (1849 - 1929),

• American gambler, gunfighter and lawman

Fig. 5. Comparison of GC-MS and ACS testosterone assays for female specimens (ACS testosterone = 0.72 GC-MS + 1.2 nmol/L, r^2 = 0.31).

J.Taieb et al; Clin Chem 49:8:1381-1395(2003)

J.Taieb et al; Clin Chem 49:8:1381-1395(2003)

Immunoassays for Testosterone in Women: Better than a Guess?

"Laboratory professionals should not be associated with a test where an educated guess would provide an equivalent or better result."

> Clinical Chemistry Editorial D.A. Herold and R.L. Fitzgerald Clin. Chem. 49:8 1250 - 1251(2003)

Why Vitamin D?

- Cancer 50 to 80% decreased risk
- Multiple Sclerosis 62% decreased
- Type I DM 80% decreased
- Stroke and MI decreased about 40%
- Rickets decreased by ~100%
- Antimicrobial effect TB

Why Vitamin D?

- Multiple Sclerosis
 - Extra Medical Cost ~ \$2 M over last 20 years or \$100,000 year
 - 320 M in US population
 - Incidence = 1 in a 1000 thus 320,000 cases
 - Thus, \$100,000 X 320,000 = \$32 B/year

Comments on Vitamin D

- What level
 - IOM says >20 ng/mL
 - Endocrine Society says >30 ng/mL
 - Dave's Vitamin D is 50 60 ng/mL on 10,000 IU/d
 Cost?
 - Toxicity?
 - Benefits Huge long term

Response Curve for a Typical Nutrient

Comparison of 25(OH)D₃ Levels Measured in 7 Methods

Quest

Diagnostics

Roth, et al. Ann Clin Biochem. 2008;45:153-159. Used with permission.

VA San Diego Cost Justification

- Assume a single analyte with a 10 sec wide peak
- Have a 2 minute total UPLC run time
- Connect to one MS/MS
- Total instrument cost is about \$350,000
- Number of specimens analyzed per day 250
- Savings per specimen is \$14
- Daily income is \$3,500
- ROI of instruments 100 days....
- Requires high sample volume

"Big Lab" Cost Justification

- Assume a single analyte with a 30 sec wide peak
- Have a 4 minute total LC run time
- Connect 4 HPLC systems to one MS/MS
- Total instrument cost is about \$600,000
- Number of specimens analyzed per day 1200
- Reimbursement per specimen is \$40
- Daily income is \$48,000
- ROI of instruments 13 days!
- Requires very high sample volume

What about panels?

• Steroids (Cushing's, Conn's, Addison's, CAH)

• Drugs of Abuse (Bath Salts, Spice, JWH series)

• Pain Profiles (Big business)

• Thyroid Hormones (fT4, fT3 and frT3)

Scheduled MRM[™] Algorithm

Improving MRM Method Efficiency by Maximizing Analyte Utilization

A Representative Chromatogram

The 6th Annual MSACL Conference

March 1-5, 2014

Sheraton San Diego Hotel & Marina

www.msacl.org

Presented by:

The Association for Mass Spectrometry: Applications to the Clinical Lab

MSACL is a 501(c)(3) non-profit California corporation

Advanced Technologies

• High Resolution Mass Spectrometry

The Fundamentals of Exact Mass

- carbon has a mass of 12.0000
- hydrogen has a mass of 1.0078
- oxygen has a mass of 15.9949
- nitrogen has a mass of 14.0031

- It is possible to have combinations of atoms which have the same nominal (or integer) mass but different accurate mass
- If such compounds can be mass measured with sufficient accuracy it is possible to determine elemental composition

Simple Examples

- CO = 27.9949
- $N_2 = 28.0061$
- $C_2H_4 = 28.0313$
- These elemental combinations have the same nominal mass but different exact mass
- A nominal mass measurement cannot distinguish
- If compounds differ in elemental compositions then the exact mass measurement may be useful

Unknown Screening and Compound Identification

Unknown Compound in Equine Urine Extracted Using Comparative Screening

Accurate Mass and High Resolution MS and MS/MS of 337 at 2.76 min

PV

Empirical Formula Calculation Combining MS and MS/MS Information

Automatic Search of Found Formulas Against Online Databases

PV

Fragmentation Prediction Tool in PeakView[®] Software

Fragmentation Prediction Tool in PeakView[®] Software

Five out of eight peaks matched explainable MS/MS fragment ions for the 4-(1-Azenpanyl)-2,2-diphenylbutanamide structure

So what do you get from Mass Spec?

- Testosterone Quality
- Vitamin D Long term savings
- Drugs of Abuse Rapid validated result
- Steroids Panels for better Dxs
- Microbiology Better, Faster and Cheaper

Mass Spectrometry Companies

- AB SCIEX
- Agilent
- Bruker
- Ionics
- Shimadzu (bioMerieux)
- SimulTOF
- ThermoFisher
- Waters

THE ASSOCIATION FOR MASS SPECTROMETRY APPLICATIONS TO THE CLINICAL LAB

MSACL 2014 6th Annual Conference & Exhibits Sheraton San Diego Hotel & Marina San Diego, CA March 1-5, 2014 www.msacl.org

David Herold, MD, PhD, DABCC University of California, San Diego Phone: (858) 552-8585 x7758 E-mail: <u>dherold@ucsd.edu</u>

50 year rule – George Ebers, MD Oxford, UK

1. Neural Tube Defect – 1958 through 1991 - UK still not using folate

2. Small Pox – Variolation vs Vaccination

a. Africa, India, Turkey

- b. Milk maids Cow Pox and Jenner 1794
- c. 1840 Vaccination accepted as only method

3. Scurvy – James Lind 1747 – 1794 - 1804

6 teatment groups with 2 pts each for 6 days

- 1. Liter of cider
- 2. 25 drops of H_2SO_4
- 3. 30 mL of vinegar
- 4. 0.5 L seawater
- 5. 2 oranges & 1 lemon
- 6. 30 mL barley water
- 4. Cigarettes and Cancer link first suggested in 1930s
- 5. Sugar and diabetes?