

Michael R. Descour, Ph.D., DMetrix, Inc., & University of Arizona Lloyd J. LaComb, Jr., Ph.D., DMetrix, Inc.

DMETRIX'S (FUTURE) PERSPECTIVES ON DIGITAL IMAGING & DIGITAL PATHOLOGY SYSTEMS

Outline of presentation

- Thanks to Robert Michel and his excellent staff for putting on these outstanding meetings
- Thanks to distinguished audience for staying the extra day
- · Digital pathology market and trends
- · DMetrix background
- · Digital imaging background and the paradigm of parallel imaging
- Laboratory workflow and implications for imaging instruments
- Data storage considerations
- · Concluding remarks

Digital pathology market

- Same trend as transformed radiology over last 2 decades...
- Divided into research and clinical market sectors
- · Adoption most advanced in research market
 - This market sector is very receptive to digital imaging already
 - Estimated 600-800+ systems installed world-wide
- Clinical market emergent
 - Estimated by GE Healthcare to eventually reach \$2B
 - High throughput is essential
 - Adoption lagging research market
- Fundamental enabling technology: convert glass slides to digital images, a.k.a., slide scanning

Adoption of digital pathology

Billing with 88305 and 88361, to estimate adoption of digital pathology among independent labs, hospitals, and pathology groups: Adoption at ~2-3%. Average global reimbursement is \$62 vs. \$91 per claim.

- Important developments: FDA clearances but very piecemeal
 - Receptor/antibody specific, reagent specific, instrument specific
 - Need more clearances with a broader scope
- Integration with information technology (LIS, PACS): In progress

Data sources: CMS, Laboratory Economics.

A few words about DMetrix

- Company spun out from worldrenowned College of Optical Sciences and Telemedicine programs at University of Arizona
- Company founded by pathologists and engineers seven (7) years ago
- Continued advanced-microscopy work funded by the National Institutes of Health (5 funded SBIR grants)
- Multiple awards for innovation: 2 R&D 100 Awards, Wall Street Journal Runner Up, University of Arizona and AZ Governor's Awards
- Focus on innovation:
 - 18 issued US patents, 14 patents pending, 2 licensed patents

Point of reference: What we are trying to accomplish

• How to think about the number of pixels in one glass-slide image?

- Even though a slide is "small"...
 - ...imaging of biological specimens requires 100's of millions of pixels.

DMetrix's parallel imaging: the array microscope

- Parallel-imaging concept, exists now as a product in context of digital pathology (histology & cytology)
 - DX-40, EX-40, and multispectral imaging models
- 80 microscopes in one instrument
- Highest-throughput scanner on the market for the last 5 years

Benefits of DMetrix systems

- · Rapid image acquisition
 - High throughput, AND/OR
 - Increased information content at pace of others
 - Multiple colors; AND/OR
 - · Multiple z-planes
- Fast and safe slide handling
 - Air-flow to move slides without touching
 - Gauntlet of sensors monitors slide positions
 - High sustained and unsupervised throughput
- · Images output to various formats
 - JPEG, BigTIFF, DICOM*, custom formats
- Compatible with 3rd-party image analysis & image management software, including LIS software

Why is high throughput important?

- **Observation**: When our customers speak of digital pathology, they speak of using digital images, not taking them.
- The creation of digital images opens the gates to all sorts of valueadding processes.
 - **Examples** include:
 - sharing of digital data among professionals (2nd opinion),
 - automated image analysis (objective, quantitative, and reproducible), and
 - · workflow-efficiency improvements.
 - To get there, glass slides have to be converted into digital files: No reason to delay that conversion.
- We think that high *throughput* is essential. We feel that it is the key factor needed to bring digital pathology to clinical practice.
 - Not time per slides but instead slides/unit time.

Work flow example Large batch process (650 slides) What are implications for an imaging instrument's throughput? 160 140 Slides to pathologist 120 Images to pathologist 100 Images to pathologist 80 ⊢lmages to pathologist 60 40 20 0 5/1/09 12:00 AM 4/30/09 12:00 AM 4/30/09 4:00 AM 4/30/09 8:00 AM 4/30/09 4:00 PM 4/30/09 8:00 PM 5/1/09 4:00 PM 5/2/09 12:00 AM 5/2/09 8:00 AM 4/30/09 12:00 PM 5/1/09 8:00 AM 5/1/09 12:00 PM 5/1/09 8:00 PM 5/2/09 4:00 AM 5/1/09 4:00 AM Data from P. Chang's APIII 2008 presentation.

Workflow at the pathologist's desk

- Key requirement: Ultrafast image viewing/navigation
- · Standard: viewing a glass slide moved by hand
 - To meet the standard, viewing may require a specialized workstation
- Software to aid pathologist in organizing/performing work
 - Rapid access to other information about case
 - Sort cases according to level of difficulty, per individual pathologist's preferences
 - Computer aided review

DMetrix's Focus software

Data storage costs

- Since 1990, the price per gigabyte has decreased an average 47% per year
 - In October 2008, it reached \$0.10, i.e., the cost of a slide + coverslip
 - Today: \$0.08/GB
- Circa 2011: Total cost of storing slide images expected to be dominated by capital costs (e.g., scanners, maintenance costs), not storage media

Conclusions

- Market adoption in the single percents, significant opportunity remains
- Challenging existing standard to match in terms of productivity
- To address this challenge in two fundamental ways, DMetrix has:
 - Developed parallel imaging to accelerate image capture in digital pathology
 - Highest throughput scanner product for the past five (5) years
 - Up to 40 slides/hour
 - Developed ultrafast image viewing to approximate microscope viewing
- Paradigm shift: Parallel imaging is a prerequisite for wide scale adoption of digital imaging and digital pathology
- Future: Opportunities for business models founded on image data
 - But this requires that imaging can affordably provide a data pipeline

Acknowledgments

- Thanks go out to:
 - DMetrix staff
 - Our customers
 - Dr. Ron Weinstein for his continuing inspiration
- You can reach me at:
 - descour@dmetrix.com
 - (520) 722 9510